Reply to 'Comment on 'Approximate analytical solutions of the Dirac equation with the Pöschl-Teller potential including spin-orbit coupling"

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42198002
(http://iopscience.iop.org/1751-8121/42/19/198002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.154
The article was downloaded on 03/06/2010 at 07:45

Please note that terms and conditions apply.

REPLY

Reply to 'Comment on 'Approximate analytical solutions of the Dirac equation with the Pöschl-Teller potential including spin-orbit coupling'"

Ying $\mathbf{X u}^{1}$, Su He ${ }^{2}$ and Chun-Sheng Jia ${ }^{3,4}$
${ }^{1}$ College of Sciences, Southwest Petroleum University, Chengdu 610500,
People's Republic of China
${ }^{2}$ Scientific Research Office, Southwest Petroleum Institute, Chengdu 610500, People's Republic of China
${ }^{3}$ State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,
Southwest Petroleum University, Chengdu 610500, People's Republic of China
E-mail: xy2004@swpu.edu.cn and chshjia@263.net

Received 22 December 2008, in final form 13 February 2009
Published 22 April 2009
Online at stacks.iop.org/JPhysA/42/198002

Abstract

We reply to the comment on our recent paper made by H Ackay (2009 J. Phys. A: Math. Theor. 42 198002). We agree that the definitions of some parameters are wrong, and give some corrections to our recent paper (2008 J. Phys. A: Math. Theor. 41 255302).

There are some notation errors in this recent paper (2008 J. Phys. A: Math. Theor. 41 255302).
(1) In equation (2) on page 3 , the matrix β should read

$$
\beta=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) .
$$

(2) In definitions of parameters β and γ given in equations (13b) and (13c) on page 4 , replace (13b) and (13c) with

$$
\begin{aligned}
\beta & =-\frac{\left(M-E_{n \kappa}+C\right) B(B-\alpha)}{4 \alpha^{2}}+\frac{1}{4} \kappa(\kappa-1), \\
\gamma & =-\frac{\left(M-E_{n \kappa}+C\right) A(A+\alpha)}{4 \alpha^{2}} .
\end{aligned}
$$

(3) In definitions of parameters η and δ given in equations (14) and (17) on page 5, replace (14) and (17) with

$$
\begin{aligned}
& \eta=\frac{1}{4}\left(1+\sqrt{1-\frac{4\left(M-E_{n \kappa}+C\right) B(B-\alpha)}{\alpha^{2}}+4 \kappa(\kappa-1)}\right), \\
& \delta=\frac{1}{4}\left(1-\sqrt{1-\frac{4\left(M-E_{n \kappa}+C\right) A(A+\alpha)}{\alpha^{2}}}\right) .
\end{aligned}
$$

[^0](4) At the bottom of page 5 , equation (22) should read
\[

$$
\begin{gathered}
M^{2}-E_{n \kappa}^{2}+C\left(M+E_{n \kappa}\right)=4 \alpha^{2}\left(-n-\frac{1}{2}+\frac{1}{4} \sqrt{1-\frac{4\left(M-E_{n \kappa}+C\right) A(A+\alpha)}{\alpha^{2}}}\right. \\
\left.-\frac{1}{4} \sqrt{1+4 \kappa(\kappa-1)-\frac{4\left(M-E_{n \kappa}+C\right) B(B-\alpha)}{\alpha^{2}}}\right)^{2}
\end{gathered}
$$
\]

(5) At the top of page 6, equation (23) should read

$$
\begin{aligned}
M^{2}-E_{n \kappa}^{2}+C & \left(M+E_{n \kappa}\right)=4 \alpha^{2}\left(-n-\frac{1}{2}+\frac{1}{4} \sqrt{1-\frac{4\left(M-E_{n \kappa}+C\right) A(A+\alpha)}{\alpha^{2}}}\right. \\
& \left.-\frac{1}{4} \sqrt{1-\frac{4\left(M-E_{n \kappa}+C\right) B(B-\alpha)}{\alpha^{2}}}\right)^{2} .
\end{aligned}
$$

(6) The condition $\delta+\eta<0$ given below equation (25) on page 6 should be replaced with $\delta+\eta+n<0$.
(7) In the last paragraph on page 6 , replace the sentences
'In order to show the procedure of determining the bound state energy eigenvalues from equation (22), we take a set of physical parameter values, $\alpha=0.35, A=1.50, B=$ $1.00, M=5.00$, and $C=-0.35$, to give a numerical example. When $n=1$ and $k=-1$, equation (22) yields the following values of $E_{1,-1}:-4.749874,4.534463$. We choose $E_{1,-1}=-4.749874$ as the solution of equation (22), and find that the values of η and δ are $\eta=3.859947$ and $\delta=-7.050444$, respectively. If we take $E_{1,-1}=4.534463$ as the solution of equation (22), the values of η and δ are $\eta=1.096028$ and $\delta=-0.596650$, which do not satisfy the regularity condition, $\eta<-\delta$. Thus, we can only take the negative energy value $E_{1,-1}=-4.749874$ as the solution of equation (22).' with
'In order to show the procedure of determining the bound state energy eigenvalues from equation (22), we take a set of physical parameter values, $\alpha=0.35, A=3.00, B=$ $1.60, M=1.00$, and $C=-5.00$, to give a numerical example. When $n=1$ and $k=-1$, equation (22) yields the following values of $E_{1,-1}:-1.954940,-3.867166$. We choose $E_{1,-1}=-1.954940$ as the solution of equation (22), and find that the values of η and δ are $\eta=3.234909$ and $\delta=-6.231288$, respectively. If we take $E_{1,-1}=-3.867166$ as the solution of equation (22), the values of η and δ are $\eta=1.301037$ and $\delta=-1.419417$, which do not satisfy the regularity condition, $\delta+\eta+n<0$. Thus, we can only take the negative energy value $E_{1,-1}=-1.954940$ as the solution of equation (22).'
(8) At the top of page 7, table 1 must be replaced with

Table 1. The bound state energy eigenvalues $E_{n \kappa}$ of the pseudospin symmetry Pöschl-Teller potential for several values of n and k.

\tilde{l}	$n, \kappa<0$	(l, j)	$E_{n, \kappa<0}$	$n-1, \kappa>0$	$(l+2, j+1)$	$E_{n-1, \kappa>0}$
1	$1,-1$	$1 \mathrm{~s}_{1 / 2}$	-1.954940	0,2	$0 \mathrm{~d}_{3 / 2}$	-1.954940
2	$1,-2$	$1 \mathrm{p}_{3 / 2}$	-1.849226	0,3	$0 \mathrm{f}_{5 / 2}$	-1.849226
3	$1,-3$	$1 \mathrm{~d}_{5 / 2}$	-1.717583	0,4	$0 \mathrm{~g}_{7 / 2}$	-1.717583
4	$1,-4$	$1 \mathrm{f}_{7 / 2}$	-1.576032	0,5	$0 \mathrm{~h}_{9 / 2}$	-1.576032
1	$2,-1$	$2 \mathrm{~s}_{1 / 2}$	-1.403027	1,2	$1 \mathrm{~d}_{3 / 2}$	-1.403027
2	$2,-2$	$2 \mathrm{p}_{3 / 2}$	-1.343060	1,3	$1 \mathrm{f}_{5 / 2}$	-1.343060
3	$2,-3$	$2 \mathrm{~d}_{5 / 2}$	-1.267058	1,4	$1 \mathrm{~g}_{7 / 2}$	-1.267058
4	$2,-4$	$2 \mathrm{f}_{7 / 2}$	-1.185920	1,5	$1 \mathrm{~h}_{9 / 2}$	-1.185920

(9) In equation (27) on page 7, equation (27) should read

$$
\lim _{\alpha \rightarrow 0} E_{n \kappa}=-(A-B)^{2}-M
$$

Acknowledgment

Dr Akcay has correctly pointed out that some notations are wrong. We would like to thank Dr Akcay for his helpful comments.

[^0]: 4 Author to whom any correspondence should be addressed.

